
Interaktive Explosionsansichten
zur Präsentation von DNA

Nano-Strukturen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Maximilian Sbardellati
Matrikelnummer 01526262

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc. Prof. Dr. Dipl.-Ing. Ivan Viola
Mitwirkung: Dipl.-Ing. Haichao Miao

Wien, 2. November 2018
Maximilian Sbardellati Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Interactive Exploded Views for
Presenting DNA Nano-Structures

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Maximilian Sbardellati
Registration Number 01526262

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Dr. Dipl.-Ing. Ivan Viola
Assistance: Dipl.-Ing. Haichao Miao

Vienna, 2nd November, 2018
Maximilian Sbardellati Ivan Viola

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Maximilian Sbardellati
Rebengasse 35, 2700 Wiener Neustadt

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. November 2018
Maximilian Sbardellati

v

Acknowledgements

I want to thank Haichao Miao for being a great advisor, his continuous support and
his valuable inputs. Additionally, I want to thank the staff of the Research Division
of Computer Graphics, with special thanks to Hsiang-Yun Wu, for their feedback that
showed me new ideas on how to improve my work. Last but not least, I want to thank
my family, friends and colleagues for their support and advice.

vii

Kurzfassung

Mit der täglich steigenden Komplexität von DNA Nano-Strukturen, die mit der Unterstüt-
zung von Computern konstruiert werden, wird auch die Präsentation dieser komplexer.
Um das größte Problem bei der Präsentation, die visuelle Verdeckung von Stukturkom-
ponenten, zu lösen, haben wir eine semi-automatische Methode entwickelt, die effektive
interaktive Explosionsansichten von DNA Nano-Strukturen erstellt und besonders für Aus-
bildungszwecke eingesetzt werden kann. Um dies zu bewerkstelligen, werden ausgewählte
Komponenten einer DNA Nano-Struktur anhand der vier Parameter Explosionsrichtung,
-distanz, -reihenfolge und Komponentenauswahl verschoben. In dieser Arbeit werden
drei verschiedene Ansätze beschrieben, wie die Explosionsrichtung ausgewählt werden
kann, wobei zwei davon von der Objektstruktur bestimmt sind und eine vom Benutzer
willkürlich gewählt werden kann. Bei den zwei Struktur definierten Ansätzen wird eine
Methode beschrieben wie man die Explosionsdistanz berechnen kann und drei verschiede-
ne Explosionsreihenfolgen werden vorgestellt. Die Explosionskomponenten bei diesen zwei
Ansätzen sind durch die hierarchische Struktur des Datensatzes bestimmt, das das Objekt
beschreibt. Bei dem Ansatz, bei dem der Benutzer die Explosionsrichtung bestimmt,
kann dieser auch die Explosionsdistanz und die Explosionskomponenten frei bestimmen.
Dieser Ansatz stellt eine mögliche Explosionsreihenfolge zur Verfügung. Die entwickelte
Applikation stellt außerdem die Möglichkeit bereit die Explosionen zu animieren und
„Ease“ Funktionen in diesen Animationen zu verwenden.

ix

Abstract

As the complexity of computer-aided-designed DNA nano-structures progresses day by
day, the presentation of these structures is becoming complex. To tackle the main
presentation problem, visual occlusion of structure components, we developed a semi-
automated method to create effective interactive exploded views for DNA nano-structures,
especially for educational purposes. This is done by displacing selected components of
a DNA nano-structure based on the four key parameters explosion direction, distance,
order and component selection. In this thesis we describe three different strategies of
choosing the explosion direction, with two of them being defined by the object structure
and one by the user. For the two structure defined approaches a method to calculate
the explosion distance and three different explosion orders is described. The explosion
components for these two approaches are defined by the hierarchical structure of the
dataset, that describes the object. The user defined approach lets the user decide on the
explosion distance and features one possible explosion order. It also lets the user select
the explosion components arbitrarily. The developed application additionally features
the possibility to animate an explosion and to use easing in these animations.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 DNA Nanotechnology . 2
1.2 Exploded Views . 3
1.3 Methodological Approach . 4
1.4 Structure of the Work . 5

2 Related Work 7

3 Explosion Styles 11
3.1 Structure-Defined Explosion . 11
3.2 User-Defined-Path Explosion . 18

4 Implementation 21
4.1 Software and Hardware . 21
4.2 Overarching Features . 22
4.3 Structure-Defined Explosion . 24
4.4 User-Defined-Path Explosion . 27

5 Results 31
5.1 Static Exploded Views . 31
5.2 Animated Exploded Views . 33
5.3 Interactive Design of Exploded Views 34

6 Discussion and Future Work 35

7 Conclusion 37

Bibliography 39

xiii

CHAPTER 1
Introduction

DNA nano-structures are the product of DNA nanotechnology, which uses DNA not
for the purpose of carrying genetic information, but for the construction of arbitrary
structures in a nanoscopic scale [ZNLY14]. As with all 3D structures, the presentation of
DNA nano-structures on a 2D screen poses some challenges. The two main challenges
here are to control visual occlusion while also enhancing the visibility of the relationship
between the different components of a structure. DNA nano-structures often consist of
several hundred components, which additionally are completely intertwined given the
double helix form of DNA [WC+53]. This makes the presentation of finished or work
in progress DNA nano-structures in a visually appealing and understandable way even
harder.

Out of the many different approaches to deal with visual occlusion (for an overview about
occlusion management techniques see [ET08]), we chose the exploded view technique
to overcome it in this particular case. An exploded view separates an object into
different components before displacing them to reveal components that were occluded
before. Additionally it is used to enhance the visibility of the relationship between those
components [BG06]. This technique is especially suited to deal with visual occlusion when
presenting DNA nano-structures, since it handles visual occlusion while still showing all
the components of the exploded object. It also does not deform the individual components
of an object and has features that enhance the visibility of component relationships.
Visual occlusion management techniques like transparency [EAT07] or X-ray tunnels
[BH04], could also be fitting to handle visual occlusion for our problem statement. On the
other hand techniques like adaptive cutaways [BF08], deformations [MTB03] or multiple
viewports [BL98] are not suited for presenting DNA nano-structures in the way we want,
since they do not show all the components, deform them and give no extra information
about component relationships.

The aim of this thesis is to develop a method to use the exploded view technique for
the presentation of DNA nano-structures. The focus in the development lies on creating

1

1. Introduction

(a) DNA wireframe structure
(b) DNA origami structure

Figure 1.1: Two exemplary DNA nano-structures. The scaffold is marked grey and the
staples are marked red.

an interactive framework that enables the user to create exploded views in a fast and
easy way. Above all, we aim to generate exploded views that are easily understandable
and therefore can be used for educational purposes. The four parameters of an exploded
view, that we consider in this thesis, are the explosion direction, explosion distance,
explosion order and the selection of the components.

1.1 DNA Nanotechnology

DNA nanotechnology is a field that has been around for over 35 years. In the early 1980s
Seemann et al. were the first ones to describe the use of the structural properties of DNA
to construct nanoscale structures [SK83]. Since then the field has grown steadily, until in
2006 Rothemund developed the DNA origami technique [Rot06], which revolutionized
the landscape of DNA nanotechnology and spread the interest in the field [ZNLY14].
Additionally, the arrival of simple computer aided design tools and simulation methods
helped to boost the popularity of the field [SNL14]. In Figure 1.1 two exemplary DNA
nano-structures are shown.

Some of the features that make DNA the exceptional building material or nanoscale
structures that it is are its specific 3D conformation, chemical addressability, and its
predictable Watson-Crick base-paring. The underlying concepts that allow the creation
via self-assembly of objects or devices on a nanoscoping level with DNA, are branched
DNA junctions and sequence-specific sticky end associations [ZNLY14], [See07]. DNA
nanotechnology can be applied to several use cases. The initial idea to build nanoscopic
crystalline cages to orient other biological macromolecules soon lead to the notion of
nanometer-scale robotics. Furthermore, concepts of DNA nanotechnology can be used for
DNA-based computation and for the algorithmic assembly of materials [See07], [Win96].

Most of the DNA nano-structures that we used to develop and test our approach were
designed and built using the DNA origami technique. Such structures consist of one
long scaffold strand and a number of staple strands that provide the Watson-Crick

2

1.2. Exploded Views

Figure 1.2: A finished DNA origami design. The scaffold (black) is folded by the staples
(red, green, blue, yellow) [Rot06].

complements for the scaffold. A shown in Figure 1.2, by designing the staples in the
correct way, the scaffold can be folded to form the desired shape by creating periodic
crossovers, that hold the whole structure together [Rot06].

1.2 Exploded Views

Exploded views have been used to deal with the problem of visual occlusion for centuries.
One of the earliest examples is an exploded view drawing by Leonardo da Vinci that
is shown in Figure 1.3. The most common use cases for exploded views in the last
5 centuries were construction manuals, architectural plans and drawings in the field
of biology and medicine, all with the goal of showing all the parts of the illustrated
object concurrently and making the relationship between these parts understandable.
Today the use cases are still the same, but in a far more advanced way. The rise of
personal computers with graphical user interfaces, in combination with new methods of
data acquisition, like medical data acquired from computer tomography or the design of
mechanical parts with computer-aided design, created an environment that revolutionised
the design of exploded views.

With these new technologies, exploded views did not need to be drawn by hand anymore,
but rather could be designed in an interactive way on a computer, or even generated
completely automatically. The first attempts to do so were made in the late 1980s and

3

1. Introduction

Figure 1.3: Exploded view of a gear assembly, from Leonardo da Vinci’s Codex Atlanticus
(15th century).

early 1990s by various research groups [DFW87], [KLW89], [MK93], with most of them
using graph based approaches. The current state of the art and some different approaches
on how to create exploded views are discussed in further detail in Chapter 2.

1.3 Methodological Approach

The goal of this thesis is to generate exploded views for DNA nano-structures to facilitate
their presentation. For this purpose we developed different explosion styles to be able to
generate expressive exploded views for a wide range of DNA nano-structures.

In this thesis we present the structure-defined explosion and the user-defined-path
explosion. In the structure-defined explosion, the explosion distance is calculated using
the current DNA nano-structure. For calculating the explosion direction, we introduced
two different sub-styles of the structure defined explosion, the spherical explosion and
the principal component explosion. The spherical explosion uses the vector from the
parent structure center to the center of of the explosion component as the explosion
direction, which has the convenient effect that such an explosion preserves the initial
from of the structure (see Figure 1.4). The principal component explosion uses PCA
(Principal Component Analysis [Jol11]) to calculate the three principal components of
a DNA nano-structure, using the 3D position of all its atoms, which then serve as the
explosion directions for the explosion components.

The user-defined-path explosion lets the user decide on the explosion distance and
direction. The user can draw arbitrary paths along which the explosion components
explode.

4

1.4. Structure of the Work

(a) DNA wireframe cube (b) Exploded view of the DNA wireframe
cube

Figure 1.4: The exploded view of the DNA wireframe cube (Figure 1.4b) is generated by
using the spherical explosion on the staples and the scaffold. The structural form of the
cube is still recognizable in the exploded view.

1.4 Structure of the Work
This bachelor thesis is structured as follows: In Chapter 2 an overview of the state of the
art in the field of generating exploded views is given with special focus on approaches
that are related to ours. Different use cases for generating exploded views are introduced
and the features of exploded views that make it suitable for this work are explained.
Chapter 3 dives into the different explosion styles, that are introduced in this work. The
structure defined explosions, spherical explosion and principal component explosion, and
the user-defined-path explosion are explained in detail. Chapter 4 gives a closer look into
the implementation of these styles and introduces some overarching features that effect
all of the explosion styles. Chapter 5 shows and discusses the results of this work. Some
possible enhancements are discussed in Chapter 6. The thesis is concluded in Chapter 7.

5

CHAPTER 2
Related Work

In recent years numerous works have been published in the field of exploded views. In
this chapter the approaches that have an impact on our work in this thesis are introduced.

Agrawala et al. [APH+03] used exploded views to design effective assembly instructions
in 2003. To achieve this they developed a series of design principles to follow when
designing assembly instructions. One of these design principles states that structural
diagrams are inferior to action diagrams. Structural diagrams show all assembly parts
that should be attached to the object in each assembly step already in their ultimate
position. Action diagrams on the other hand show the parts that need to be attached
in each step, while being spatially separated from the rest of the object and featuring
lines that illustrate the correct way of attachment. Another principle deals with the
use of hierarchy and the grouping of parts. It states that people think about assemblies
considering the hierarchy of the parts. Parts with similar characteristics are often seen
as a group and parts within such a group should be added to the assembly in a parallel
or sequential way. This is comparable to the way we use hierarchy and explosion orders
in this thesis.

Li et al. [LACS08] developed a system to generate interactive 3D exploded view diagrams
of complex mechanical 3D models. They followed a set of conventions for illustrating
mechanical assemblies and applied them to their interactive explosion diagrams. One of
these conventions introduces a blocking constraint, which means that a part can only
explode if there is no other part blocking its way. To work effectively with this constraint
Li et al. introduce an explosion tree which sorts the parts according to the blocking
constraint. Parts that are not blocked by any other parts are found in the leafs of the
tree and explode first. In some cases this method is not sufficient, the most common
being when one part contains other parts. In this case, the container is split into two
segments and those segments are exploded. To split it, a cutting plane is used, which
passes through the bounding box center of the container. The normal of the cutting plane
is parallel to the chosen explosion direction. To satisfy the convention of compactness

7

2. Related Work

the plane is chosen to minimize the distance the segments must be separated to show the
internal parts. Even though the blocking constraint add a lot of realism to an interactive
exploded view, we discard it in our approach for the sake of simplicity.
Li et al. [LACS08] also focus heavily on the interactive exploration of 3D models. The
expansion and collapse of an exploded view can be animated. It is also possible to
directly manipulate parts by dragging them. To enforce the blocking constraint while
dragging a part, the offset to the explosion ancestors of the part in the explosion tree
is propagated. Another interaction feature enables the user to automatically expose
targeted parts. The user selects one part as target and the system generates an exploded
view, that explodes all parts that occluded the target (see Figure 2.1b).

Sonnet et al. [SCS04] presented an approach to integrate annotations to explosion
diagrams, for the purpose of exploring virtual 3D models. The two main parts of
their work are the interactive creation of explosion diagrams and the visually appealing
presentation of accompanying text for exploded model components. For exploring 3D
models they use a 3D probe that displaces model components when they are covered
by the probes scope, similar to Elmqvist’s BallonProbe [Elm05] (see Figure 2.1a). To
decide if a component is inside the probes scope or not, a representative point of the
component need to be determined. They propose three different approaches to calculate
this representative point. The simplest one is to use the center of the components
bounding box, which has the drawback that this point might be located outside the
component. A more sophisticated way is to calculate the skeleton of the component
and determine a significant point on the skeleton as representative. Usually the point
at which the most branches of the skeleton coincide is chosen. Since this point may be
far away from the component center, this approach is also not perfect. A compromise
between the two mentioned approaches is to use the point of the skeleton which is nearest
to the bounding boxes center. This point is also referred to as centroid of the component.
The approach we use to calculate a representative point for the explosion components is
introduced in Chapter 4.

The BalloonProbe of Elmqvist [Elm05] greatly inspired the way we use spherical explosion
in our work. Elmqvist states that the problem of visual occlusion can be separated into
two parts, object discovery and object access. He defines object discovery as the
problem of finding all objects that are currently displayed and object access as retrieving
all the graphically encoded information of an object. Since one cannot retrieve any object
information, if one does not even know the object exists, object discovery is the severer
problem. Object access is also affected by partial object occlusion. According to Elmqvist,
both of these problems can be solved with his BalloonProbe approach. As can be seen
in Figure 2.1a, he defines a balloon around the cursor. Every object that falls into the
balloon gets projected onto the balloon surface along the vector passing from the balloon
center through the center of the displaced object, which is similar to the approach of
Sonnet et al. [SCS04]. On the surface, the object gets drawn normally to its old position.
To keep a sense of the original object positions, a wireframe version of the objects is
rendered at their original position. It is also possible to select a group of objects that

8

(a) 2D overview of the BalloonProbe
technique. Components that are in-
side the BallonProbes scope get pro-
jected spherically onto the probes sur-
face [Elm05].

(b) This illustration of a turbine model
was automatically computed to expose the
user-selected target part labeled in red
[LACS08].

Figure 2.1: The BalloonProbe technique (Figure 2.1a) inspired the spherical explosion.
Figure 2.1b shows an exploded view, where the outer shell and the exhaust housing are
split into two parts, similar to the PCA explosion.

should not be displaced, even if they are inside the balloon. This feature is very effective
in dealing with the object access problem, since it displaces all but some selected objects
to then make it possible to retrieve all their graphically encoded information.

9

CHAPTER 3
Explosion Styles

As stated before, there are two different explosion styles for DNA nano-structures that we
present in this thesis: the structure-defined explosion and the user-defined-path explosion.
The structure-defined explosion features two sub-styles: the spherical explosion and
the principal component explosion. In this chapter the methodology of these styles
is introduced in detail by examining how the parameters explosion order, explosion
direction, explosion distance and the selection of the explosion components in regard to
an exploded view are handled by each of the explosion styles.

3.1 Structure-Defined Explosion

The structure-defined explosion derives all its parameters from the data hierarchy and
the 3D relationship and position of the components of the explosion object itself. The
two sub-styles, the spherical explosion and the principal component explosion, compute
three of the four major explosion parameters in the same way. Only the approach of
determining the explosion direction differs from style to style.

Selection of Components

As seen in Figure 3.1, the data we work with is already structured in a hierarchical way.
The structure-defined explosion uses a parent-child relationship to handle the selection
of explosion components. The user first has to select a parent level that is also present in
the actual data. The afterwards selected child level has to be lower in the hierarchy, than
the parent level. If, for example, molecule is chosen as the parent level, one could choose
residue as the child level. In this approach, we consider each parent as an individual
explosion object and the children as the explosion components of the corresponding
parent. Therefore, to calculate the parameters explosion order, explosion distance and
explosion direction for an explosion child, only the structure of its parent is taken into

11

3. Explosion Styles

Figure 3.1: Example structure of a molecule. M = molecule, C = chain, R = residue, B
= backbone, SC = sidechain

account. Since the procedure of creating an exploded view is the same for each parent
structure, it is described assuming that we only have one parent.

In the following elaborations we refer to the explosion components as children. Since
parents and children most of the time are not atoms, the lowest hierarchical level, we
need to establish a representative point when we use the position of a parent or child for
calculations. In our approach, we use the center of the parent or child structure which is
calculated by determining the average 3D position of all the atoms in the structure as
the representative point.

Explosion Order

Structure-defined explosion allows the user to choose between three different explosion
orders: parallel, peeling and sequential (see Figure 3.2). It is also always possible to select
one or more explosion children, in which case only these children explode. All the steps
needed to prepare for the selected explosion order are done in preprocessing after the
explosion level was chosen. Since the parallel explosion is a special form of the peeling
explosion, we first take a closer look at peeling, before explaining parallel explosion.

The idea behind peeling is to group the children of each parent according to the distance
they have to their parents center and then explode one group after another starting
with the group farthest away. The children within a group explode simultaneously. The
number of groups can be chosen by the user. This approach is useful if one wants
to take a closer look at parts of the structure that are occluded, without exploding

12

3.1. Structure-Defined Explosion

(a) Original Structure (b) Parallel Explosion

(c) Peeling Explosion (d) Sequential Explo-
sion

Figure 3.2: The three explosion orders using spherical explosion on a chain of the DNA
wireframe cube. In Figure 3.2b all residues of this chain are exploding simultaneously. In
Figure 3.2c the peeling group that is currently exploding is marked yellow. Figure 3.2d
shows the sequential explosion. The residues that are currently exploding are marked
yellow.

every component and instead, only removing parts that hinder the visibility of specific
parts.. The first parameter we need to determine is the length of the peeling interval (see
Figure 3.3). This is done by subtracting the distance of the nearest child to the parent,
min, from the distance of the farthest away child to the parent, max, and dividing it by
the number of peeling groups, n, as shown in Equation 3.1.

peelingIntervalLength = max−min

n
(3.1)

The next step is to assign the children to the correct group by iterating through the group
indices g and children and checking if (g − 1) · peelingIntervalLength < xi −min <=
g · peelingIntervalLength, with xi being the distance of the current child i to the parent.
At last, the peeling groups are sorted in descending order according to their distance to
the parent center.

13

3. Explosion Styles

Figure 3.3: 2D overview of the grouping into the correct peeling groups. The black dot
represents the center of the parent structure. The gray dots represent the center of the
parents children. The distance between the nearest and the farthest away child gets
divided into three intervals of the same length. The children get grouped according to
the interval they lay in. The groups explode starting with the farthest away group, group
3 in this case, and all the children in the same group explode simultaneously.

When using parallel explosion, all children explode simultaneously. This is a fast way
to create a completely exploded representation of the object which can be used to get
a quick overview of the objects components. On the other hand, it is hard to see how
different parts of the objects interact with each other, because they all move at the same
time. Since it has the same behaviour as a peeling explosion with just one peeling group,
the number of peeling groups is set to 1 and the explosion is carried out like a peeling
explosion, when the user chooses the parallel explosion in the GUI.

The third possible explosion order is sequential. The idea behind the sequential explosion
is to explode one child after another starting with the child that is farthest away from the
parent center. This is done by sorting the children in descending order by their distance
to the parent center and then exploding one by one. This explosion order has the benefit

14

3.1. Structure-Defined Explosion

of highlighting the interaction of the part that is currently moving with its surrounding
parts. Especially when animated, this approach gives an excellent overview on how each
part fits into the whole object.

Explosion Distance

The last parameter that is attained equally by the spherical and the principal component
explosion is the explosion distance. Since we do not want to shift the explosion
components an arbitrary or fixed distance, we developed an approach that calculates the
explosion distance di for each child i based on four explosion distance parameters:

di = e · f · s · pi (3.2)

The explosion value e is a value normalized between 0 and 99. This parameter is
adjusted by the user by manipulating a slider and represents the main source of changing
the explosion distance interactively. The force parameter f is also adjustable by the
user via a slider and shortens or lengthens the maximal explosion distance. The slider
features the natural numbers from 0 to 10. If the chosen slider position is between 0 and
5 the value gets normalized and if it is between 5 and 10 it gets projected to the interval
1-3. This enables the user to extend the maximum explosion distance to up to three
times the original maximum value of di. The structural parameter s ensures that the
explosion distance for smaller objects is less than for larger objects. It is calculated in a
preprocessing step by determining the average distance of all atoms of an object in an
unexploded state to its center which is then divided by a given constant sD:

s = averageDistanceToObjectCenter

sD
(3.3)

We chose sD to be 25 in our implementation, because it delivered the most pleasing
results. The last of the four parameters that influence the explosion distance is the
position parameter pi. It represents the relative distance of an explosion child to the
center of the parent structure. This is also done in preprocessing by first determining
the distance of the child that is farthest, and the one that is nearest from the parent to
the parent in an unexploded state. In a second iteration the position parameter for the
explosion child is calculated by normalizing the distance of the current explosion child i
to the parent xi in the interval between the farthest, max, and the nearest, min, child
to the parent, as shown in Equation 3.4.

pi = xi −min

max−min
(3.4)

Unlike the other parameters that have the same effect on every explosion child of a parent
structure, pi has a different value for each child i and has the effect that children that
are nearer to the parent center, have a shorter explosion distance than children that are
further from the center. As seen in Figure 3.4, this effect also preserves the underlying

15

3. Explosion Styles

(a) (b) (c)

Figure 3.4: Figure 3.4a shows a chain of the DNA wireframe cube. In Figure 3.4b the
chain is exploded on the residue level considering the position parameter. The underlying
form of the chain is preserved. Figure 3.4c does not consider the position parameter.
Therefore, each residue has been moved exactly the same distance and the underlying
form gets distorted. Both explosions use the spherical explosion.

form of the object even in its exploded state. When working with objects that have a
more linear or tube-like structure, this effect is sometimes not desirable since it hinders
children nearer to the center to explode far enough. Therefore, it is also possible to omit
the position parameter and calculate the explosion distance using only the other three
parameters.

3.1.1 Spherical Explosion

The idea behind the spherical explosion is similar to the balloon probe of Elmqvist
[Elm05] in terms of how the explosion direction is determined by the vector from the
center of the balloon probe to the component that gets moved. In our case, we did not use
the center of the balloon probe, but the center of the parent structure and the component
to establish the explosion direction. Additionally the explosion distance is calculated as
described in Subsection 3.1 instead of projecting all the explosion components onto a
sphere with a given radius.

To determine the explosion direction of a child i the center of the parent pc is saved in
a preprocessing step. Additionally, the original distance doi from the parent center to
the child is saved. When the user is manipulating the sliders to explode an object, the
calculated explosion distance di is added to doi:

dui = doi + di (3.5)

with dui being the updated distance from the parent center to the child. In the next
step, the current center of the child ci is calculated to determine its current 3D position.
Next, the vector from the parent center to the child center ~v = ci − pc is calculated
and normalized. The updated position of the child cui after being exploded is then

16

3.1. Structure-Defined Explosion

determined by extending ~v per dui. Since ~v starts at the origin and not at the parent
center, ~v is moved back to pc:

cui = ~v · dui + pc (3.6)

To move the child to its new position, the vector from ci to cui is calculated and added
to the position of every atom of the child.

The spherical explosion achieves its visually most appealing results when used on objects
that have similar length in all 3 dimensions. If that is the case, as with the DNA wireframe
cube or the DNA wireframe icosahedron (see Figure 5.2), the resulting exploded views
are easy to understand and the preservation of the underlying object from can be seen in
a perspicuous way.

3.1.2 Principal Component Explosion

The principal component explosion uses aspects of PCA (principal component analysis
[Jol11]) to determine the explosion direction. Most of the time PCA is used to explore
large datasets and for making predictive models. The so called principal components
refer to the eigenvectors of the covariance matrix of the given dataset, which in our
case consist of the given DNA nano-structures atom-positions. We use them to determine
possible explosion directions. The maximum number of principal components in a dataset
is defined as min(n− 1, p), with n being the number of observations and p the number
of variables each observation has. In our case, the observations are the positions of the
explosion components (children of a given parent structure), which have three variables
(their x,y and z coordinates). Therefore, we can compute a maximum of three possible
explosion directions. The first principal components has the highest possible variance
given a dataset and is the longest of the eigenvectors. The following components have
the largest variance that is still possible given the constraint of being orthogonal to the
already established components.

The three possible explosion directions are calculated in a preprocessing step. First, the
position of each child in an unexploded state ci is saved and the center of the parent,
which is equivalent to the mean of all its children, is calculated. Next, the covariance
matrix is computed and its eigenvectors are calculated. The eigenvectors are sorted in
descending order according to their length before being normalized and saved.

When choosing the principal component explosion, the user has to choose along which
eigenvector ex, x ∈ {1, 2, 3} he wants to explode. If the explosion sliders are the manipu-
lated, the chosen eigenvector ex for each child i is extended to the length of the calculated
explosion distance di. Since we do not want to move all children in the same direction, a
plane is laid through the parents center which is orthogonal to ex. If a child lies on the
backside of the plane, the extended eigenvector is subtracted from ci and if it lies on the
front of the plane, it gets added to ci to calculate the updated position of the child cui:

cui = ci ± (ex · di) (3.7)

17

3. Explosion Styles

Figure 3.5: User-defined-path explosion of a DNA origami structure. Two chains of the
structure were chosen as explosion groups. Each group has an explosion path consisting
of 2 arrows (green and blue). The groups are not fully exploded.

To move the child to its new position, the vector from the current child center to cui is
calculated and added to the position of every atom of the child.
The principal component explosion provides visually appealing and understandable
exploded views with objects of all shapes.

3.2 User-Defined-Path Explosion

Instead of deriving all the explosion parameters from the structure of the explosion object
itself, as in the structure-defined explosion, the user-defined-path explosion lets the user
define most of them arbitrarily. The idea behind this approach is to give the user more
freedom in designing his individual exploded views. When the user has selected the
components he wants to explode, the explosion direction and distance are set by creating
an arbitrary explosion path, using arrows that can be drawn directly in the view-port.
This gives the user the opportunity to create complex exploded views and animations
(see Figure 3.5).

Selection of Components

In user-defined-path explosion, the structure of the object is not considered when selecting
the explosion components. Instead, one can select an arbitrary group of atoms from the

18

3.2. User-Defined-Path Explosion

object and mark them as an explosion group. The only constraints when adding a new
group are that it is not allowed to be empty or contain atoms that are already members
of another explosion group, since an atom cannot explode in more than one direction
at a time. If one still wants to use the given structure of the object, it is possible to
select a node from the object hierarchy (see Figure 3.1) and add it as explosion group,
as long as the constraints are not violated. If a group consist of more than one atom a
representative point is needed when talking about the groups position. Similar to the
structure-defined explosion in Section 3.1, we use the center of the explosion group as its
representative. It is also possible to delete existing explosion groups.

Explosion Order

This approach only features the parallel explosion order. When the user manipulates
the explosion slider every explosion group explodes simultaneously. It is also possible to
select one or more groups manually. In this case, only the selected groups explode.

Explosion Distance and Direction

The explosion distance and direction are defined by the path that the user draws into
the view-port. An explosion groups path consists of up to 5 arrows, the first one starting
at the center of the group and ending wherever the user clicks in the view-port. The
following arrows always start at the end of the previous one. Once a path is drawn, the
group explodes along the direction that is set by the path. The maximum explosion
distance is defined by the paths length, therefore each group has a different maximum
explosion distance. The actual explosion distance d is interactively manipulated via a
slider in the user interface.

When a group is created, an empty path is generated. Additionally, a new path model m
is created that contains the start s and end atom e of each arrow that is drawn for this
path as seen in Figure 3.6. This is done to enable the manipulation of the arrow after
it is drawn by changing the position of the arrows atoms. The first arrow of the path is
the only one that creates a start and an end atom. The following arrows use a reference
to the end atom of the previous arrow as their s and only create a new e for themselves.
Each arrow i is represented by a tuple ali = (si, ei, li) which is saved in a vector, the first
arrows tuple being the first element of the vector. li represents the length of the arrow.
When deleting arrows from a path, it is only possible to delete them from the last one to
the first one, otherwise it would cut the path into two or more separated parts. Deleting
an arrow also deletes the last atom from m and if the first arrow gets deleted, its start
atom also gets deleted.

To actually move an explosion group to its exploded destination, the groups position on
its path need to be determined. First, the percentage the slider is moved is calculated by
dividing d with its maximum value of the slider. Next, the total length of the path t is
determined by adding the length of all its arrows. By multiplying the percentage of the
slider with t, we compute at which length of the path the group needs to be moved t′.

19

3. Explosion Styles

(a) Path nodes in the menu. (b) Path nodes in the view-port.

Figure 3.6: When a group gets created, a new path model for the path is generated. The
first drawn arrow creates 2 atoms describing its start and end. The following arrows use
the end atom of the previous arrow as start atom and create an end atom for themselves.
By moving the atoms, the direction and distance of the path can be manipulated.

To get the 3D position on the path, first we need to find the arrow on which the group
lands. To do so, we iterate over the arrows, starting with the first one, and subtract each
arrows length from t′:

t′ = t′ − li (3.8)

When t′ gets negative we have found the correct arrow x. By reversing the last subtraction
and diving t′ by lx, we get the percentage p of lx where the group hast to move:

p = t′ + lx
lx

(3.9)

Next, the vector ~v from sx to ex is calculated and resized to the needed length by
multiplying it with p. At the end, ~v is translated back to the arrows beginning by adding
the arrows start position to ~v, which now points to the exact location that the group
needs to explode to.

To move the group to its new position, the position of the groups center is subtracted
from ~v and the result is added to the position of every atom of the group. An example
of a complex user-defined-path explosion is shown in Figure 5.1.

20

CHAPTER 4
Implementation

In this chapter, the implementation of the styles for exploding DNA nano-structures that
were introduced in detail in Chapter 3 are described. First, we introduce the application
in which the exploded views for DNA nano-structures can be used. Additionally, the
programming language and the used frameworks are mentioned. Then the implementation
of each explosion style on its own is discussed by examining how each style is integrated
in the application starting from the GUI (graphic user interface). We also take a closer
look at additional features that support each style or work overarching with multiple
styles.

4.1 Software and Hardware
As the major development environment, Visual Studio 2015 was used on a Windows
10 platform. C++14 was used as the main programming language. The GUI was
programmed with Qt 5.10.1 using Qt Creator 4.6 for the design and the msvc2015-64
Compiler. The application was developed as an element for SAMSON: Software for
Adaptive Modeling and Simulation Of Nanosystems version 0.61. The SAMSON SDK
version 0.6 with the provided API2 was used to interact with the SAMSON software
platform. To calculate the eigenvectors for the principal-component explosion (see
Subsection 3.1.2), the header only library eig3 by Barnes3 was used.

The hardware configuration used for testing and creating the results (see Chapter 5) was
comprised of the following main components:
Intel(R) Core(TM) i7-7500U CPU @2.70GHz 2.90GHz
16 GB RAM
NVIDIA GeForce 940MX

1https://www.samson-connect.net
2https://documentation.samson-connect.net/developers/latest/
3http://barnesc.blogspot.com/2007/02/eigenvectors-of-3x3-symmetric-matrix.html

21

4. Implementation

Figure 4.1: Schematic class structure of the application.

4.1.1 Application Structure

The core of the explosion view application is the App class. On start-up it creates
instances of the GUI and the Editor, which is responsible for drawing the user-defined-
path explosions arrows (see Section 3.2). Additionally, instances of the handlers for
the 3 explosion styles are created. Since the SphericalExplosionHandler and the
PrincipalComponentExplosionHandler share much of their behaviour, they inherit
from their abstract upper-class StructureDefinedExplosionHandler, which bundles
the common features. All the communication between the separate parts of the application
is handled by App as shown in Figure 4.1.

4.2 Overarching Features
Some features of the explosion view application do not belong to a specific explosion
style, but are used by all of them or have the use of overall preparation for an explosion
in general. Some of them, which can be controlled by the user, are shown in Figure 4.2.

When a new structural model of a DNA nano-structure is loaded in the SAMSON
environment, a few initial preparations are performed. First, all the variables that
contain the values calculated in preprocessing steps for the explosion styles get cleared
and the GUI is reset to its standard values. The same steps are completed when a model
gets deleted from the environment. Next, references of all the models atoms are saved
into the modelAtomIndexer, which is then used to move the model into the origin of
the view-port. Then the position of all atoms in the modelAtomIndexer is saved. This
allows us to reset the model to its original form and position using the Reset button (see
Figure 4.4 and Figure 4.5). The Reset button also clears all the variables in the handler
instances and transfers the application to the state it was in right after the model was
loaded.

The main interaction point to control the creation of an exploded view is the explosion

22

4.2. Overarching Features

Figure 4.2: GUI with overarching functionalities.

slider (see Figure 4.4 and Figure 4.5). When this slider is manipulated, the method that
handles the movement of the explosion components for the currently chosen explosion
style is triggered.

The QSlider that was used to integrate the explosion sliders only works with integers.
Therefore and because of the way the slider input is handled to calculate intervals for
the peeling and sequential explosion (see Subsection 4.3.1), the maximum value of the
explosion sliders is set to the number of atoms in the loaded model. To transform the
slider input back into the interval 0-99 of the needed explosion value e (see Subsection 3.1),
the value explosionSliderAdjust = numberOfAtoms

99 is saved. The input of the slider is
then divided by explosionSliderAdjust right before being used to calculate the explosion
distance.

To animate an explosion, the movement of the explosion slider is automated. To do
this, a timer for each the structure-defined explosion slider (see Figure 4.4) and the
user-defined-path explosion slider (see Figure 4.5) is created. If the timer is activated,
by clicking the + or - button, it continuously triggers a page step on the corresponding
slider. The timer interval as well as the length of the page step can be manipulated
by the user, as shown in Figure 4.2. The timer interval can be adjusted between 10
milliseconds and 300 milliseconds. The defaults for the page step manipulator are:
default = 100, min = 10, max = 1000. To adjust to the changing maximum value of the
explosion sliders, maxOfSlider, the maximum value of the page step manipulator is set
to max = maxOfSlider

100 to ensure that we have at least 100 steps that can be animated.
The animation stops when any other command is given over the GUI.

Instead of just exploding the components in a linear fashion, it is possible to use an

23

4. Implementation

Figure 4.3: Supported ease functions4.

ease function (see Figure 4.3). One can chose between the 3 different ease functions
CubicEaseIn, CubicEaseOut and CubicEaseInOut and the standard value Linear in
the settings menu (see Figure 4.2). The ease functions enhance the animation of explosions
by providing seemingly more fluid motions.

By clicking the Rotate Camera button, the view-port camera is rotated around the
origin of the view-port along the y-axis. This feature further enhances the visibility of
static as well as animated exploded views.

4.3 Structure-Defined Explosion

In this section, the features that surround the structure-defined explosion style, whose
methodology was explained in Section 3.1 are discussed. An overview over all the features
is shown in Figure 4.4.

Which of the two structure-defined explosion styles is performed when moving the
explosion slider is determined by a boolean for each of them in the App. When the
QRadioButton for one of the styles is chosen the corresponding boolean is set true and
the other one is set false. Then the values for the chosen style that were calculated in a
preprocessing step before the first manipulation of the slider (is referred to as prepV alues)
are cleared. Laslyt the explosion slider position is reset to 0. If an exploded view was
created before the change of styles, the model does not return to its original form, but
stays in the exploded state which is then considered the new original form for the next
explosion.

When the principal component gets changed, the corresponding value is set in the
PrincipalComponentExplosionHandler and the prepV alues are cleared.The same goes
for the change between styles, the slider is reset, but the state of the model does not
change.

If the explosion parent or child is changed, first a check is run by the GUI to ensure
that the parent level is above the child level. If that is not the case, the parent is set one
level above the child, or the child one level below the parent depending on which value
was changed by the user. The parent and child level are set in both handler instances.

4https://easings.net/de

24

4.3. Structure-Defined Explosion

Figure 4.4: GUI with all functionalities of the structure-defined explosion. The slider
under the Explode label is referred to as explosion slider.

The prepV alues have to be cleared because the structure and position parameters for
the explosion distance need to be recalculated and the slider gets reset. The reset of the
prepV alues also allows us to generate hierarchical exploded views, which means that one
can for example first explode all the chains of a molecule and then the residues of all the
chains as shown in Figure 5.2.

When changing the explosion order, the last explosion is reset by resetting the explosion
slider before clearing the prepV alues. The corresponding explosion order values are set
in the SphericalExplosionHandler and the PrincipalComponentExplosionHandler.
The number of peeling intervals is changed to 1, so we can use the peeling algorithm for
parallel explosion and the prepV alues are cleared, because a change in the number of
peeling intervals requires new preprocessing.

One of the key use cases of the exploded view is to explode the staples to get a better

25

4. Implementation

overview of their relationship with the scaffold. In this scenario, the staples and the
scaffold often have the same hierarchical level. Therefore, the scaffold also explodes,
which is not necessarily wanted. Since most of the time, the scaffold is the explosion
component whose center is nearest to the center of the parent structure, it is easily
possible to remove it from the explosion components. This is done by unchecking the
Explode Nearest Child check-box, which also resets the last explosion. Then the
prepV alues are cleared and in the next preprocessing step the explosion child, which is
nearest to the parent center, is not included in further explosions. Another positive effect
of not exploding the scaffold is, that it dramatically reduces the number of atoms, that
need to be moved, since the scaffold is the largest explosion component. It also improves
the frame-rate of an animated explosion drastically.

The Use Position Parameter check-box resets the last explosion when its value
changes. Following this the corresponding boolean in the SphericalExplosionHandler
and the PrincipalComponentExplosionHandler is set and the position parameter is
incorporated, or not, in the further calculation of the explosion distance.

Similar to the user-defined-path explosion, it is also possible to display arrows in the
structure-defined explosion, but instead of showing the path that the components ex-
plode along, only the path that they already travelled is displayed (see ?? and ??).
When checking the Display Arrows check-box, first the Editor is set as the active
editor in the SAMSON environment. Next, the boolean saveArrows is set true in the
SphericalExplosionHandler and the PrincipalComponentExplosionHandler. Since
the length of the arrows changes with every change of the explosion slider, we need to
recreate the arrows on each adjustment. After an explosion step, if saveArrows = true,
the new position and the original position of each explosion child is saved together with a
path index. The Editor receives these positions by requesting them over the App. Using
the two positions as start and end point, the Editor draws the arrows.

The Explosion Force slider, same as the explosion slider, triggers movement of the
explosion components, but does not have the functionality of being automated.

4.3.1 Peeling and Sequential Explosion

For the explosion orders peeling and sequential, it is necessary to decide which explosion
child should move given a certain position of the explosion slider, referred to as explosion
value e in Subsection 3.1. This step happens before the explosion distance is calculated
and its goal is to provide the correct explosion value ei for each explosion component i.
Therefore Equation 3.2 needs to be adjusted to

di = ei · f · s · pi (4.1)

since e varies for each child for the peeling and sequential explosion. The adjustment of
ei, as described in Section 4.2, happens afterwards.

26

4.4. User-Defined-Path Explosion

For the both explosion orders, the component that is farthest away is to be moved
first. The components for the peeling explosion being the chosen explosion groups, and
for the sequential explosion the components of the chosen child level. To achieve this, it
is necessary to determine, how long the interval l for each component on the explosion
slider is, given the number of components n. In the case of the peeling explosion, n was
chosen by the user. This is done by dividing the maximum value, max, of the explosion
slider by n: l = max

n . Next, we iterate over the components, starting with the component
that is farthest away from the parent. The explosion value ei for each component i is
calculated by checking if e is inside the interval that belongs to i. As shown in Algorithm
4.1, ei is 0 for all components that nearer to the parent than i, max for all components
that are farther away than i and (e mod l) · n for the component i. Lastly, the chosen
easing function is applied on the value. If the explosion order is peeling, each child of
i is exploded, if it is sequential, the child i is exploded.

Algorithm 4.1: Calculate Explosion Value
Input: explosion slider input e, interval length l, index of component i, number

of components n, explosion slider maximum max
Output: updated explosion value ei for component i

1 ei ← 0;
2 if l · (i− 1) ≤ e & e < l · i then
3 ei ← (e mod l) · n;
4 end
5 else if e ≥ l · i then
6 ei ← max;
7 end
8 return ei;

4.4 User-Defined-Path Explosion
The features we discuss in this section surround the user-defined-path explosion. Its
methodology was explained in Section 3.2 and an overview over the features is given in
Figure 4.5.

When one has selected some nodes of the model that should become an explosion group, the
group is created by clicking the Add Group Button or hitting G on the keyboard. The
command to create a group is transferred to the UserDefinedPathExplosionHandler,
which first collects all the selected atoms from the SAMSON environment and saves them
into the groupIndexer. Then a check is run to see if the groupIndexer is empty and
if not, if one of its atoms is already a member of a different group. If that is the case
the group cannot be created and −1 is returned to the GUI, which then prints an error
message. Otherwise, the group is saved together with an index. Next, the structural
model that contains the path atoms is created by adding a new SBMStructuralModel
to the SAMSON environment and given the name: Paths Of Group x, x being the

27

4. Implementation

Figure 4.5: GUI with all the functionalities of the user-path-defined explosion. The slider
under the Explode label is referred to as explosion slider.

group index. Lastly, an empty vector for the arrows is saved and the group index is
returned to the GUI, which then adds the group index into the QComboBox that shows
all the created groups.

To add an arrow to the explosion path of a group the Add Explosion Path button
needs to be clicked, or A to be pressed. First, the App gets all existing arrows from
the UserDefinedPathExplosionHandler to check if arrows already exist for this group.
The ID and the coordinates of the already existing arrows are also shown in the table
of the user-defined-path explosion menu (see Figure 4.5). If the table is already full, no
more arrows can be created. If the new arrow is the first one, the center of the group is
calculated to be the start of the new arrow, otherwise the end position of the last arrow
is used for this. Next, the drawing of the arrow in the Editor is triggered. As long as the
user does not click on a position in the view-port or cancels the arrow creation, by click
on the Cancel Add Path button or pressing C, the arrow is drawn from its starting
point to the current position of the mouse pointer. To set the end point of the arrow
one has to click somewhere in the view-port. The clicked position is then used as the
end point of the arrow. Given the start and the end position, the arrow is then saved
as described in Subsection 3.2 and the arrows ID and coordinates are written into the
table.

28

4.4. User-Defined-Path Explosion

When deleting the last arrow of the path, as described in Subsection 3.2, the Delete
Last Explosion Path Button needs to be clicked or D pressed. The arrow is deleted
and the table entry is cleared by the GUI.

Since an explosion group can consist of any arbitrary collection of atoms, it is important
to be able to make all atoms visible that belong to a group. This is done by checking
the Show Current Group check-box. If checked the group currently selected in the
QComboBox is marked as selected in the SAMSON environment, which highlights all
its atoms. Additionally, if only one group is selected, only this group explodes when the
explosion slider is manipulated.

When changing the group in the QComboBox, all groups are marked as deselected.
Then, the Show Current Group check-box is checked to highlight the newly selected
group. Additionally the arrow table is cleared and filled with the correct values for the
new group, which are requested from the UserDefinedPathExplosionHandler.

To delete an explosion group, the Delete Explosion Group button needs to be
clicked. The App resets the position of the explosion group to its unexploded state
before the group is erased and the structural model and the arrows are deleted in
the UserDefinedPathExplosionHandler. In the GUI, the group is removed from the
QComboBox and the table is cleared. The next group is displayed and the table is filled
with the groups arrows.

By unchecking the Display Arrows check-box, it is possible to hide the explosion path
arrows.

29

CHAPTER 5
Results

In this chapter the three different types of results that can be produced using our approach
are presented.
As discussed in Section 5.1, static exploded views are illustrations that show an object in
its exploded state. They are the most commonly used and oldest type of exploded views
since they do not necessarily need to be constructed with the aid of a computer and can
be shown in printed form (see Figure 1.3).
Animated exploded views, which are presented in Section 5.2, are a more advanced option
of presenting object explosions. They show the transition of an object in its original
state to its exploded state and back. Therefore they are a great way of presenting the
composition of an object which is the reason why they are often used in advertising
videos nowadays.
Both static and animated exploded views are finished products of working with our tool
and cannot be changed once they were created. Since sometimes it is useful to be able to
adjust or newly create exploded views on the spot during a presentation for example, we
present the interactive design of exploded views in Section 5.3.
Additionally to presenting results of the static, animated and interactive exploded views,
we also discuss their advantages and disadvantages.

5.1 Static Exploded Views

Static exploded views present a DNA nano-structure in its final exploded state. They
can be used to illustrate a number of diverse features of a structure. The static exploded
view in Figure 5.1 for example shows how many different categories of staples there are
in the DNA origami tube. Staples that have the same 3D structure belong to the same
category and are marked in the same color. The user-defined-path explosion, which was
used to create this view, is especially suited for static exploded views since it allows
precise positioning of the explosion components.

31

5. Results

(a) Original state of the tube. (b) Arrows that show the user-defined
explosion paths.

(c) Staples of tube exploded to show their category.

Figure 5.1: Exploded view of the DNA origami tube using the user-defined-path explosion.
Staples that have the same shape are moved to group at the same area and are marked
in the same colour. The scaffold is marked grey.

In comparison to Figure 5.1a where the staples are also marked according to their
category, the illustration in Figure 5.1c reduced the visual occlusion between the structure
components to a minimum. It is clearly visible how many different categories of staples
there are and how many staples each category possesses. When showing the explosion
paths as in Figure 5.1b it is also possible to make observations about the distribution of the
different categories. Regarding the DNA origami tube, we can read from this illustration
that there is some kind of symmetry concerning staples from the same category.

Static exploded views are best used to show the different components that a DNA
nano-structure comprises. This can be done efficiently by exploding each component in
a way that it is not occluded by any other component. A drawback of static exploded
views is that it is sometimes hard to understand the 3D relationship between components
in a 2D picture.

32

5.2. Animated Exploded Views

(a) Original state of the icosahedron. (b) Spherical explosion of staples.

Figure 5.2: Keyframes of the animated spherical explosion of the DNA wireframe
icosahedron. The scaffold is marked in grey and the staples in colour.

5.2 Animated Exploded Views

To evaluate the expressiveness of animated exploded views using our approach we created
two animations. The first one shows the sequential spherical explosion of the DNA
wireframe icosahedrons staples. Two keyframes of this animation are shown in Figure 5.2.
This animation gives a great overview over the icosahedron model as a whole with reduced
visual occlusion. It also shows how many staples are used for this model and where they
are used to bind the different components of the wireframe scaffold.
The second animation shows a hierarchical explosion of the DNA wireframe cube. First,
the staples of the cube are exploded in a spherical fashion. Next, a spherical peeling is
performed on the residues of a staple. This again gives a great overview over the cube
model but then goes more into detail by showing the composition of a staple as well.

Animated exploded views are a good way to present newly designed DNA nano-structures.
They allow the viewer to get a quick examination of the structure and highlight the
components that were used to design it.
Additionally they have a number of advantages over static exploded views. One of them
is the possibility to add camera rotation to the animation. This enhances the viewers
perception of the 3D structure of the model, because it allows viewing it from different
angles. Another advantage is that through the animation of the explosion it is way easier
to understand where the explosion components come from originally. In static exploded
views this can only be shown by displaying the explosion path which adds some occlusion
and is confusing if there are a lot of components.

33

5. Results

(a) Original state of the cube.
(b) Inspection of the relationship between
the blue staple and the scaffold.

Figure 5.3: Keyframes of an interactive exploded view of the DNA wireframe cube. The
scaffold is marked in grey and the staples in colour.

5.3 Interactive Design of Exploded Views
Static and animated exploded views are both the end result of a user interactively
exploding DNA nano-structures. Of course one does not necessarily need to create such
results but can just create exploded views on the fly during a work process. This is useful
if one wants to present a structure in detail for example during a lecture. The user can
use different explosion styles and orders arbitrarily to present a structure in a meaningful
and detailed way.
The main advantage of working interactively on exploded views in contrast to animated
and static exploded views when presenting a DNA nano-structure is that the user can
react to questions from the audience and create a fitting view on the spot. A downside
of presenting a structure interactively is that complex exploded views, especially when
using the user-defined-path explosion, can take a long time to be created. Therefore, it is
better to prepare such exploded views and present them in a static or animated way.

Figure 5.3 shows keyframes of a video where the user works interactively on an exploded
view of the DNA wireframe cube. First, to inspect the scaffold of the cube, a principal-
component explosion of the cubes staples along the first principal component is done.
Then a single staple is moved back to take a closer look on how this staple binds to the
scaffold as shown in Figure 5.3b.

34

CHAPTER 6
Discussion and Future Work

The goal of the thesis was to create a tool for designing meaningful and customizable
exploded views that can be used for educational purposes and science communication.
With the wide range of interaction possibilities that is provided by our work it is possible to
create a variety of different views. Each explosion style (see Chapter 3) and form of usage
(see Chapter 5) has its positives and negatives that were discussed in previous chapters
but in combination they provide all features needed to achieve our goal. Nevertheless
there are some points that could be enhanced to increase the quality of the results yielded
by our approach.

Since it is computationally very expensive to change the position of atoms in SAMSON,
the framerate when exploding large models is very low. This is especially unfavourable
when the user wants to create animations. On the hardware that was used to create the
results of this thesis only 5-15 frames per second, depending on the number of atoms of
the model, were achieved when animating an explosion.
An interesting approach which could be useful to reduce the amount of explosion compo-
nents, and therefore increase the framerate of animations, for structure-defined exploded
views is mentioned by Tatzgern et al. [TKS10]. They group sub-assemblies of their
explosion object according to their similarity in a preprocessing step. Afterwards, a
representative is picked for each group and only this representative explodes. When
adjusted for exploded views for DNA nano-structures this means that for example staples
could be grouped automatically according to their shape and only one staple per group
explodes.

One notable issue of our approach is that it does not feature blocking constraints for
explosion animations in any form. This leads to explosion components phasing through
each other in two different cases. The first one occurs when the animation starts. Since
the components are completely intertwined in each other given the double-helix form of
DNA, it is tough to remove the staples from the scaffold without deforming them. The
second case is a concern especially when using the user-defined-path explosion. If two

35

6. Discussion and Future Work

or more user defined paths overlap, are too close to each other or end at points near to
each other, the corresponding explosion components will collide. This could be solved by
detecting these collisions and stopping the movement of one of the colliding components
as long as the other component is in its way.
Since the goal of this work is to provide the means to present the structure of a DNA
nano-structure and not to provide realistic transition movement of components, we
disregarded this problem for the sake of simplicity.

Also it is currently only possible to implode the current explosion because we do not
consider historical movement of components. This means that if for example first the
chains of a model and then the chains residues are exploded it is only possible to implode
the residues but not the chains. The only way to move the chains back to their imploded
positions is to press the Reset button which instantaneously moves every atom to its
original position.

A possible enhancement of static exploded views could lie in adding rotation to explosion
components after it was moved to its designated position. For instance it would be
easier to see that the staples belonging to one category in the exploded view shown in
Figure 5.1c indeed have the same shape if they were all rotated to face in the same
direction.
Another interesting feature is mentioned by Li et al. [LACS08]. Their system supports
the direct movement of explosion components per drag and drop. A similar approach
could be used as a simplified form of the user-defined-path explosion with the user just
dragging components to the wanted location.

Our work is focused on creating meaningful exploded views for DNA nano-structures
provided in the .pdb file format. To expand the area of application it would be sensible
to include support for other file formats. Additionally it would be interesting to test our
approach on a broader range of molecules to see if exploded views could also be of use in
presenting them.

36

CHAPTER 7
Conclusion

In this thesis we presented three different styles for creating static, animated and
interactive exploded views for DNA nano-structures with the goal of reducing visual
occlusion and providing a presentation form that is suited for educational purposes. The
three styles differ in their approach of determining the four key parameters explosion
order, direction, distance and the selection of the explosion components.

The two structure-defined explosion styles, spherical explosion and principal-component
explosion, use the given hierarchy of a DNA nano-structure to determine the explosion
components. The maximum explosion distance of each component is derived from the 3D
structure of the model and the current distance is interactively manipulated by the user
via two sliders. The structure-defined explosion styles feature three different explosion
orders. Parallel explosion moves all components at the same time when the sliders are
manipulated. Sequential explosion moves one component after another starting with the
component farthest away from the parent centre when exploding and the nearest to the
parent center when imploding. Peeling explosion groups the components according to
the distance to the parent center and the chosen number of groups and then explodes
the groups sequentially.
The explosion direction for the spherical explosion is determined by the vector from the
parent center to the child center. Principal-component explosion calculates the three
principal components of the model with PCA [Jol11] using the 3D position of all its
atoms. The user can choose which principal component is used as explosion direction.

In the user-defined-path explosion the components or groups can be chosen arbitrarily
with the constraint that a group cannot be empty and one atom can only belong to a
single group. The explosion direction is defined directly by the user who is able to draw
the explosion path, which consist of up to five arrows, into the view-port. Therefore, the
maximum explosion distance is defined by the length of the drawn path and the current
distance is again manipulated via a slider. This explosion style only features the parallel
explosion order where each group explodes simultaneously.

37

7. Conclusion

The static, animated and interactive exploded views that can be created using our
approach provide a presentation form of DNA nano-structures that simplifies the un-
derstanding of their 3D structure by drastically reducing visual occlusion between the
separate model components. The user-defined-path explosion which allows complex
exploded views is especially suited to illustrate the relationship between components and
to create meaningful views for educational purposes.

Future work could include implementing more sophisticated approaches for generating
exploded views by introducing blocking constraints to provide more realistic animations.
The consideration of historic explosions could also lead to more refined animations. Also,
the automatic grouping of similar explosion components could reduce the time needed to
create an exploded view.

38

Bibliography

[APH+03] Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff
Klingner, Pat Hanrahan, and Barbara Tversky. Designing effective step-
by-step assembly instructions. In ACM Transactions on Graphics (TOG),
volume 22, pages 828–837. ACM, 2003.

[BF08] Michael Burns and Adam Finkelstein. Adaptive cutaways for comprehensi-
ble rendering of polygonal scenes. In ACM SIGGRAPH Asia 2008 Papers,
SIGGRAPH Asia ’08, pages 154:1–154:7, New York, NY, USA, 2008. ACM.

[BG06] Stefan Bruckner and M Eduard Gröller. Exploded views for volume data.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1077–1084,
2006.

[BH04] Ryan Bane and Tobias Hollerer. Interactive tools for virtual x-ray vision in
mobile augmented reality. In Proceedings of the 3rd IEEE/ACM International
Symposium on Mixed and Augmented Reality, pages 231–239. IEEE Computer
Society, 2004.

[BL98] William H Bares and James C Lester. Intelligent multi-shot visualization
interfaces for dynamic 3d worlds. In Proceedings of the 4th international
conference on Intelligent user interfaces, pages 119–126. ACM, 1998.

[DFW87] Thomas De Fazio and Daniel Whitney. Simplified generation of all mechanical
assembly sequences. IEEE Journal on Robotics and Automation, 3(6):640–658,
1987.

[EAT07] Niklas Elmqvist, Ulf Assarsson, and Philippas Tsigas. Employing dynamic
transparency for 3d occlusion management: Design issues and evaluation. In
IFIP Conference on Human-Computer Interaction, pages 532–545. Springer,
2007.

[Elm05] Niklas Elmqvist. Balloonprobe: Reducing occlusion in 3d using interactive
space distortion. In Proceedings of the ACM symposium on Virtual reality
software and technology, pages 134–137. ACM, 2005.

39

[ET08] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion manage-
ment for visualization. IEEE Transactions on Visualization and Computer
Graphics, 14(5):1095–1109, 2008.

[Jol11] Ian Jolliffe. Principal component analysis. In International encyclopedia of
statistical science, pages 1094–1096. Springer, 2011.

[KLW89] Ehud Kroll, Ehud Lenz, and John R Wolberg. Rule-based generation of
exploded-views and assembly sequences. AI EDAM, 3(3):143–155, 1989.

[LACS08] Wilmot Li, Maneesh Agrawala, Brian Curless, and David Salesin. Automated
generation of interactive 3d exploded view diagrams. In ACM Transactions
on Graphics (TOG), volume 27, page 101. ACM, 2008.

[MK93] Riaz Mohammad and Ehud Kroll. Automatic generation of exploded view
by graph transformation. In Artificial Intelligence for Applications, 1993.
Proceedings., Ninth Conference on, pages 368–374. IEEE, 1993.

[MTB03] Michael J McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deforma-
tions for browsing volumetric data. In Visualization, 2003. VIS 2003. IEEE,
pages 401–408. IEEE, 2003.

[Rot06] Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns.
Nature, 440(7082):297, 2006.

[SCS04] Henry Sonnet, Sheelagh Carpendale, and Thomas Strothotte. Integrating
expanding annotations with a 3d explosion probe. In Proceedings of the
working conference on Advanced visual interfaces, pages 63–70. ACM, 2004.

[See07] Nadrian C Seeman. An overview of structural dna nanotechnology. Molecular
biotechnology, 37(3):246, 2007.

[SK83] Nadrian C Seeman and Neville R Kallenbach. Design of immobile nucleic
acid junctions. Biophysical journal, 44(2):201, 1983.

[SNL14] Stephanie S Simmel, Philipp C Nickels, and Tim Liedl. Wireframe and
tensegrity dna nanostructures. Accounts of chemical research, 47(6):1691–
1699, 2014.

[TKS10] Markus Tatzgern, Denis Kalkofen, and Dieter Schmalstieg. Compact ex-
plosion diagrams. In Proceedings of the 8th International Symposium on
Non-Photorealistic Animation and Rendering, pages 17–26. ACM, 2010.

[WC+53] James D Watson, Francis HC Crick, et al. Molecular structure of nucleic
acids. Nature, 171(4356):737–738, 1953.

[Win96] Erik Winfree. On the computational power of dna annealing and ligation.
1996.

40

[ZNLY14] Fei Zhang, Jeanette Nangreave, Yan Liu, and Hao Yan. Structural dna
nanotechnology: state of the art and future perspective. Journal of the
American Chemical Society, 136(32):11198–11211, 2014.

41

	Kurzfassung
	Abstract
	Contents
	Introduction
	DNA Nanotechnology
	Exploded Views
	Methodological Approach
	Structure of the Work

	Related Work
	Explosion Styles
	Structure-Defined Explosion
	User-Defined-Path Explosion

	Implementation
	Software and Hardware
	Overarching Features
	Structure-Defined Explosion
	User-Defined-Path Explosion

	Results
	Static Exploded Views
	Animated Exploded Views
	Interactive Design of Exploded Views

	Discussion and Future Work
	Conclusion
	Bibliography

